Predicting the Impact of Increasing Temperatures on Corn Yield

Bruno Basso and Ryan Nagelkirk Michigan State University Resilient Agriculture 2014

SUSTAINABLE
CORN.ORG
CROPS, CLIMATE, CULTURE AND CHANGE
United States Department of Agriculture
National Institute of Food and Agriculture
This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190: Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems

Simulation of crop biomass

$$
B_{t}=g * d
$$

where:
$\mathrm{B}_{\mathrm{t}}=$ Total biomass
g = Average growth rate
$D=$ growth duration
The economic yield of a crop is the fraction of B_{t} that is partioned to grain

Leaf primordia, leaf tip, and ligule numbers of maize as function of thermal time

Data from Zur et al., (1989)

Maize leaf-tip appearance Rate at constant and variable Day and night temperature

Data from Tollenaar et al., (1979)

Ritchie and NeSmith, 1991

SUSTAINABLE
CORN.ORG

CERES Models validation

Legend

- locations number of papers
\square
\square 3
4 \square 5
6 \square 7 \square 19 \square64 0

1 10 26 N

1 Decimal Degrees 2

SALUS Crop model

County Average Reported Yield vs SALUS Simulation

nature
 climate change
 Home | Current issue | News \& comment | Research | Archive V | Authors \& referees V About the journal
 Archive $\geqslant 2014$ April Correspondence $>$ Abstract

ARTICLE PREVIEW

view full access options .

NATURE CLIMATE CHANGE | CORRESPONDENCE

Temperature and drought effects on maize yield

Bruno Basso \& Joe Ritchie

Total Precipitation by Season

Basso and Ritchie, 2014 Nature Climate Change

b

Kernel number

- The period of active ear elongation could be defined from 227 degree-days before silking to 100 degree-days after silking (base temperature, $8^{\circ} \mathrm{C}$)

Simulations of sites in Sustainable Corn

 Project - No Adaptation

Simulations of sites in Sustainable Corn
 Project with Adaptation

USDA

Ensemble of 19 crop models

Strategic and tactical N management using SALUS

Dual criteria optimization through tested model determines the N rate that minimizes nitrate leaching and increases net revenues for farmers

Accounting for global warming potential

Conclusion

Agriculture will need to adapt to climate variability and change
Crop models will play a crucial role in the assessment of the vulnerability of the US food and fiber system to climate extremes and change by identifying strategies that will help to adapt and mitigate to climate change

Sustainable agriculture will require that society appropriately rewards farmers and other agriculturalists for the production of both food and ecosystem services.

